python - Frequency Response Scipy.signal -


i'm learning digital signal processing implement filters , using python implement test ideas. started using scipy.signal library find impulse response , frequency response of different filters.

currently working through book "digital signals, processors , noise paul a. lynn (1992)" (and finding amazing resource learning stuff). in book have filter transfer functions shown below:

i divided numerator , denominator in order following equation:

i implemented scipy using:

numeratorzcoefs = [1, -1, 1, -1] denominatorzcoefs = [1, 0.54048, -0.62519, -0.66354, 0.60317, 0.69341]  freqresponse = scipy.signal.freqz(numeratorzcoefs, denominatorzcoefs) fig = plt.figure(figsize = [8, 6]) ax = fig.add_subplot(111) ax.plot(freqresponse[0], abs(np.array(freqresponse[1]))) ax.set_xlim(0, 2*np.pi) ax.set_xlabel("$\omega$") 

and produce plot shown below:

plot showing frequency response calculated scipy.sigal.freqz

however in book frequency response shown following:

plot showing frequency response book referenced above

they same shape ratio of peaks @ ~2.3 , 0.5 different 2 plots, suggest why is?

edit:

to add this, i've implemented function calculate frequency response hand (by calculating distance poles , zeros of function) , similar ratio plot generated scipy.signal, numbers not same, know why might by?

implementation follows:

def h(omega):     z1 = np.array([0,0]) # 0 @ 0, 0     z2 = np.array([0,0]) # 0 @ 0, 0     z3 = np.array([0, 1]) # 0 @     z4 = np.array([0, -1]) # 0 @ -i     z5 = np.array([1, 0]) # 0 @ 1      z = np.array([z1, z2, z3, z4, z5])      p1 = np.array([-0.8, 0])     p = cmath.rect(0.98, np.pi/4)     p2 = np.array([p.real, p.imag])     p = cmath.rect(0.98, -np.pi/4)     p3 = np.array([p.real, p.imag])     p = cmath.rect(0.95, 5*np.pi/6)     p4 = np.array([p.real, p.imag])     p = cmath.rect(0.95, -5*np.pi/6)     p5 = np.array([p.real, p.imag])      p = np.array([p1, p2, p3, p4, p5])      = cmath.rect(1,omega)     a_2dvector = np.array([a.real, a.imag])      dz = z-a_2dvector     dp = p-a_2dvector      dzmag = []     dis in dz:            dzmag.append(np.sqrt(dis.dot(dis)))      dpmag = []     dis in dp:            dpmag.append(np.sqrt(dis.dot(dis)))              return(np.product(dzmag)/np.product(dpmag)) 

i plot frequency response so:

omegalist = np.linspace(0,2*np.pi,5000) hlist = []  omega in omegalist:     hlist.append(h(omega))  fig = plt.figure() ax = fig.add_subplot(111) ax.plot(omegalist, hlist) ax.set_xlabel("$\omega$") ax.set_ylabel("$|h(\omega)|$") 

and following plot:

plot resulting manual calculation of frequency response.

the scipy generated frequency response correct. in case, wouldn't trust book's figure appears have been drawn hand.

if want find frequency response "manually", can done defining function returning original z-transform , evaluating on unit circle follows

def h(z):     num = z**5 - z**4 + z**3 - z**2     denom = z**5 + 0.54048*z**4 - 0.62519*z**3 - 0.66354*z**2 + 0.60317*z + 0.69341     return num/denom  import numpy np import matplotlib.pyplot plt  w_range = np.linspace(0, 2*np.pi, 1000) plt.plot(w_range, np.abs(h(np.exp(1j*w_range)))) 

the result same scipy.


Comments

Popular posts from this blog

sequelize.js - Sequelize group by with association includes id -

java - Android raising EPERM (Operation not permitted) when attempting to send UDP packet after network connection -

c++ - Migration from QScriptEngine to QJSEngine -